Tech Savvy: Ford

Ford Plant
Photo courtesy of Ford

In the race to go green, it’s fair to say that Ford has looked high and low – literally – to help its automotive plants cut their impact on the environment.

One of Ford’s highest profile eco-efforts can best be seen by looking down on the roof of its River Rouge factory in Dearborn, Michigan. Originally constructed starting in 1917 by Henry Ford, the complex debuted as an industrial pioneer, among the first fully-integrated industrial complexes, where steel mills, glass works and chemical plants were built side by side to speed the flow of raw materials into Ford’s burgeoning Model T plants.

It was there in 2000 that company chairman William Clay “Bill” Ford Jr., the founder’s great-grandson, unveiled another pioneering effort, of a greener hue. He announced plans to build the largest “living” roof ever installed on an industrial building, comprising 10 acres of hearty, green sedum plants.

Green roofs have since become a favourite of building designers. But at the time, Ford’s plan, part of a broader $2-billion site renovation, ran counter to energy-guzzling conventions in the auto biz. U.S. auto sales hit an all-time high that same year, buoyed by record sales of high-margin SUVs and sub-$2 per gallon gas.

Against this backdrop, and even though the roof was estimated to cost about the same as a conventional design, critics carped that Ford was risking money on greenwashing efforts. Yet when the roof was completed in 2002, Bill Ford stood firm. “This is not environmental philanthropy,” he said at the time. “It is sound business.”

Since then, much has changed. Gas prices have nearly doubled, endangering SUVs, and Ford’s green roof gamble continues to pay back by passively lowering the factory’s energy use for cooling, displacing electric illumination with skylights and reducing costs to filter stormwater runoff.

Elsewhere throughout Ford’s global operations, eco-roof features pioneered at River Rouge – such as day-lighting, rain water capture and cool-white materials that reflect sunlight – have become standard design features. Though the most visible, the River Rouge roof wasn’t the only water-focused effort Ford rolled out in 2002. That same year, the company began a long process to radically reduce the amount of water, energy and other resources used in its manufacturing operations.

From the start, metal-cutting machines were a top target. These computer-controlled devices shape hunks of steel and aluminum into precision auto parts, everything from big engine blocks to fine-toothed gears.

The problem? “It can be a messy process,” explains Sue Rokosz, principal environmental engineer at Ford.

Flood machining, as the conventional process is known, uses a steady stream of oil and water to cool cutting tools. This slurps up huge inflows of fresh water, requiring a lot of energy and plumbing infrastructure to keep flowing. And at the back end, it yields a slurry of oil, water and metal particles that are costly to dispose of and difficult to recycle.

As a fix, Ford turned to a process known as near-dry machining, or minimum quantity lubrication (MQL). The process replaces the stream of oily water with micro-spritzes of atomized oil delivered via articulated arms or hollow drill bits to precisely the point of contact where friction and heat build up.

It’s a small improvement that delivers outsized benefits. By making the switch, a typical manufacturing line – capable of machining roughly half a million parts every year – can lower annual water use by about 280,000 gallons and avoid the consumption of more than 28,000 gallons of lubricants.

What’s more, oily wastewater is all but eliminated and the metal shavings are relatively dry and clean, ensuring a higher share is recycled. Line workers benefit too, with drier, safer work areas, says Rokosz.

Though dry-machining systems cost slightly more upfront, their overall lifetime costs pencil out at 17 per cent less than old-style wet machines, according to Ford data.

While the technology has become Ford’s de facto standard, it can be set up only as fast as new manufacturing lines are built or old ones are replaced. So far, it’s been installed in more than a third of Ford’s 28 powertrain plants, with more on deck to make the switch.

Drop by drop, Ford’s water-savings efforts are adding up. According to its sustainability report, Ford has cut water consumption, per vehicle produced, by about half in the past decade. It is on track to cut per-vehicle consumption to around 900 gallons by 2015, compared with over 2,500 gallons in 2000. That’s roughly equivalent to taking 100 fewer five-minutes showers.

Click here to view our complete Tech Savvy series.

Latest from Clean Tech

current issue